

# **Application Note**

# Marine Time Code Distribution Using TMG512X, TMD1133 and TMD1134

STANAG / HaveQuick (HQ) Architecture for Naval Platforms

#### 1. Introduction

Modern naval platforms rely on a **common, precise time reference** for navigation, communications, combat systems, and weapon control. Many of these systems use **STANAG and HaveQuick (HQ)** time codes as their primary timing reference.

This application note describes a **typical marine time-synchronization architecture** based on TimeLink equipment:

- TMG512X Marine Time Code Generator (GNSS or external source disciplined)
- TMD1133 Redundant 1PPS / digital pulse Distributor
- TMD1134 Multi-signal Distributor for STANAG / HQ and other digital time codes

The goal is to provide a **robust**, **redundant and scalable** distribution of STANAG and HQ signals across the ship.

# 2. Functional Requirements on a Ship

A marine time system must:

- Provide a **GNSS-disciplined master time** (GPS / Galileo / GLONASS / BeiDou)
- Generate STANAG 4430 / 4372 HQ time codes and 1PPS references
- Distribute these signals to multiple consumers (CMS, radar, EW, SATCOM, weapon control, INS, etc.)
- Offer redundancy and fault-tolerant distribution
- Support **remote monitoring** from the ship's IP network (SNMP, web)

TimeLink products address these requirements as follows.

# 3. Role of Each Equipment

# 3.1 TMG512X - Marine Time Code Generator

The TMG512X is the master time source on board.

#### **Main functions**

- GNSS-disciplined internal OCXO
- Generation of:
  - STANAG 4430 XHQ
  - STANAG 4372 HQIIA
  - o ICD-GPS-060 HQ / BCD
  - o 1PPS
  - o IRIG-B00x and NMEA ZDA (for auxiliary systems)
- Up to 8 configurable outputs (RS422 / TTL / ICD-GPS-060 electrical levels)
- Integrated NTP server for IP equipment
- Remote management via HTTP/HTTPS, SNMP v2c/v3, SSH, SYSLOG

In a marine installation, the TMG512X is typically fed from a **military GPS receiver through NMEA/PPS or HQ/PPS** and installed in the **mission or combat system rack**.

#### 3.2 TMD1133 - 1PPS Redundant Distributor

The **TMD1133** is used to **fan-out the 1PPS reference**, which many subsystems use for internal disciplining.

## **Key points**

- 1 or 2 inputs (depending on model), with automatic / manual source selection
- Up to 10 isolated 1PPS outputs
- Very fast fault detection and switching
- Remote status and configuration through Ethernet (HTTP / proprietary UDP)
- Front-panel LEDs for clear local diagnostics

On a ship, the TMD1133 is typically used to supply 1PPS to:

- Navigation and INS systems
- Time servers for IP networks
- Test / measurement equipment
- Additional TimeLink generators (for local disciplining if needed)

## 3.3 TMD1134 - STANAG / HQ Multi-Signal Distributor

The TMD1134 distributes STANAG and HQ time codes toward mission-critical systems.

## **Typical configuration**

- Inputs: STANAG 4430 / 4372 or ICD-GPS-060 HQ signals from the TMG512X
- Outputs: multiple isolated copies of the same code (RS422 / TTL)
- Low jitter, low delay skew between channels
- Remote supervision and mode control over Ethernet

#### Typical consumers:

- Combat Management System (CMS)
- Radar and surface/air tracking systems
- Electronic Warfare (EW) and ESM receivers
- Missile / weapon control and fire-control computers
- Telemetry and recorders

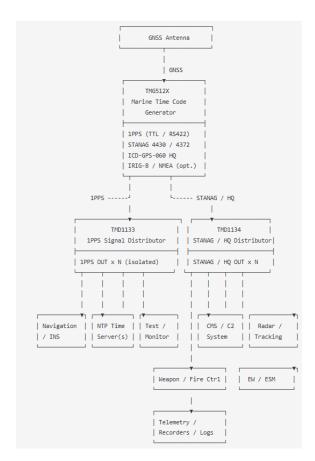
# 4. Example Marine Architecture

Below is a **typical block diagram** for a shipboard STANAG/HQ distribution system:

#### 1. TMG512X (Master Generator)

- o GNSS antenna → TMG512X
- TMG512X outputs:
  - STANAG 4430 / HQIIA on two outputs
  - ICD-GPS-060 HQ on one output
  - 1PPS on one output
  - Optional IRIG-B / NMEA outputs for auxiliary loads

# 2. TMD1133 (1PPS Distributor)


- o Input: 1PPS from TMG512X
- o Outputs: 1PPS to navigation systems, IP time servers, local monitoring units, etc.

#### 3. TMD1134 (STANAG / HQ Distributor)

- Inputs: STANAG 4430 / HQ from TMG512X
- Outputs:
  - STANAG/HQ to CMS
  - STANAG/HQ to radar/sonar
  - STANAG/HQ to weapon control / fire control system
  - STANAG/HQ to telemetry / recorders

This structure ensures that all critical systems receive **coherent STANAG/HQ time codes and a common 1PPS reference**.

# 5. Signal Mapping Example



| Source  | Signal Type       | Distributor                        | Typical Consumers                                         |
|---------|-------------------|------------------------------------|-----------------------------------------------------------|
| TMG512X | 1PPS (TTL/RS422)  | TMD1133                            | Navigation, NTP<br>servers, local<br>generators, test EQ. |
| TMG512X | STANAG 4430 XHQ   | TMD1134                            | CMS, radar, tracking sensors                              |
| TMG512X | STANAG 4372 HQIIA | TMD1134                            | Weapon control, firing computers                          |
| TMG512X | ICD-GPS-060 HQ    | TMD1134                            | SATCOM, radios<br>requiring HQ<br>synchronization         |
| TMG512X | IRIG-B00x / NMEA  | (direct or via other distributors) | Logging/recording,<br>maintenance tools                   |

# 6. Marine Integration Recommendations

## • EMI / EMC:

- o Prefer **RS422 outputs** for long runs through noisy compartments.
- Use shielded twisted pairs and proper grounding.

## Redundancy Options:

- For high-critical missions, deploy **two TMG512X** in A/B configuration, feeding separate TMD1133/TMD1134 groups or using redundant distributor options.
- o Configure automatic failover and monitor alarms via SNMP.

#### Monitoring:

 Integrate TMG512X, TMD1133 and TMD1134 into the ship's network management system, using SNMP and SYSLOG for alarms (loss of GNSS, loss of signal, PSU fault, etc.).

#### 7. Conclusion

By combining:

- TMG512X as the GNSS-disciplined STANAG/HQ master time generator,
- TMD1133 for robust 1PPS distribution, and
- TMD1134 for multi-channel STANAG / HQ fan-out,

a ship obtains a **coherent, robust and scalable marine time distribution system** compliant with STANAG and HQ requirements.

This architecture is suitable for **surface combatants**, **patrol vessels**, **support ships and coastal stations** that need reliable, standards-based time synchronization for mission and weapon systems.