

TMG4100

GNSS disciplined time & frequency generator

The TMG3400 is a GNSS disciplined time & frequency generator specifically designed for low noise applications.

The equipment is housed in 1U 19" standard case.

GNSS signal is used for long term disciplining of the internal oscillator.

GNSS

The internal GNSS receiver is a specific receiver dedicated to time application. It's a bi-constellation model able to acquire both GPS and GLONASS satellites simultaneously. It delivers a very high precision UTC second reference pulse.

Irig-B generator

The equipment includes a IRIG time code generator that allows to provide:
- an IRIGB12x signal (amplitude modulated analog signal) on both outputs.

- An unmodulated signal IRIGB00x (DCLS) on a RS485 serial link.

These signals are in phase with the internal 1PPS equipment itself synchronized on the 1PPS of GNSS reference.

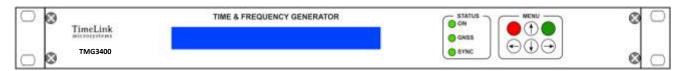
Oscillator

An internal OCXO type oscillator provides a 10 MHz frequency used to maintain time. The stability of this oscillator is better than ±2x10⁻¹⁰ per day in case of loss of external time sourcing.

When disciplined by the GNSS, the long term stability remains better than $5x10^{-11}$.

NTP Service

The TMG3400 includes a time service implementing standard NTP protocol (Network Time Protocol) allowing any computer or equipment linked to the network to synchronize. Customer's computers can be synchronized with an accuracy of 1 to 10 ms. NTP client software must be installed on each client for its synchronization with the server


Remote control

The remote control of the equipment is done via the network, using:

- The SNMP standard protocol (MIB provided)
- A proprietary UDP or TCP protocol
- An internal web server

Configuration

The overall configuration of the unit is stored on a removable SDCARD memory which allows remote software update easily.

TMG4100 front panel

Specifications

Outputs

1 PPS output

2 outputs

TTL level

Accuracy of \pm 100 ns relative to UTC when locked to GNSS.

IRIGB outputs

Selectable format on both types of outputs: standard, Bxx6 or IEEE1344

IRIG B12x 2 outputs

Modulated code (B12x): 3V ±0.5 V peak-peak 1/1: 1/3 ratio isolated by transformer. BNC connectors (analog)

IRIG B00x 1 output

No modulated (B00x) RS422/RS485 interface

10 MHz Outputs

4 outputs

Level +13 dBm ±1 dBm, 50 Ω

Guaranteed Phase noise:

1Hz <-100 dBc/Hz 10Hz <-130 dBc/Hz 100Hz <-150 dBc/Hz 1 KHz <-155 dBc/Hz ≥10 KHz <-155 dBc/Hz Spurious : <-80 dBc

Harmonics: < - 40 dBc

Internal reference

OCXO type Oscillator, 10 MHz

free running mode:

Short term stability: 1s ..10s < 1.10-12

100s < 2.10-11

Long term stability:

1 day < 2.10-10 1 month < 5.10-9

1 year < 3.10-8

<u>locked running mode:</u> Long term stability: < 5.10-11

Frequency accuracy:

When you power up the equipment, the frequency precision is >1.10-9 at 25 ° C in 6 minutes.

GNSS receiver

Time dedicated receiver with TRAIM. Bi-constellation GPS/GLONASS < ±50 ns / UTC

GNSS Antenna type

TNC connector 3V or 5V active antenna Powered by receiver

(Antenna not included)

Console

RS232 compliant Console for configuration & maintenance

Connectors:

1 x TNC for the GNSS antenna input 2 x BNC outputs for 1PPS 2 x BNC outputs for IRIG B122 4 x BNC outputs Frequency 10MHz SUB'D 1 x 9-pin female for serial console

1 x 9-pin female SUB'D for output IRIG B002

SUB'D 1 x 9-pin female to output the output "AUX" optional
1 x RJ45 network connection

Temperature:

Temperature: -10 ° to 60 ° C Storage temperature: -20 ° to 70 ° C Relative Humidity range: 10% to 90% (non-condensing)

Storage Relative Humidity: 5% to 95% (non-condensing)

Power supply:

230V AC mains supply: EEC socket 2P + with filter & On / Off switch voltage: 85-264VAC / 47-440Hz Power consumption: <20W 230VAC 50Hz

Certification:

Certified Hardware CE, ROHS and ITAR

Network Protocols

NTP

(Network Time Protocol) NTP (RFC 1305) SNTP (RFC 1361) using UDP 123 port. Server configuration V3, V4 or automatic V3/V4.

SNMP

(Simple Network Management) (RFC 1155, 1157, 1213) V2c or V3 SNMP provides to the network administrator the equipment status.

HTTP

The integrated web server allows to view the status of the equipment.

TCP / UDP

Remote in "push" mode (UDP) or "request / response" mode (TCP).

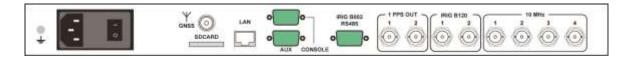
Dimensions:

Standard 19" 1U with Depth of 350 mm

Weight:

< 3 kg

MTBF


> 100 000 h

OPTIONS:

OPT1: NMEA

Output frames in standard NMEA GGA and RMC Emission at 4800 baud, 1 time per second on connector "AUX" DB9.

Electrical interface RS232

TMG4100 rear panel

Ordering code

TMG4100: Standard model TMG4100 Opt1: NMEA output